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Abstract. Electronic health records (EHRs) are representative examples of 

multimodal/multisource data collections; including measurements, images and free 

texts. The diversity of such information sources and the increasing amounts of 

medical data produced by healthcare institutes annually, pose significant 

challenges in data mining. In this paper we present a novel semantic model that 

describes knowledge extracted from the lowest-level of a data mining process, 

where information is represented by multiple features i.e. measurements or 

numerical descriptors extracted from measurements, images, texts or other medical 

data, forming multidimensional feature spaces. Knowledge collected by manual 

annotation or extracted by unsupervised data mining from one or more feature 

spaces is modeled through generalized qualitative spatial semantics. This model 

enables a unified representation of knowledge across multimodal data repositories. 

It contributes to bridging the semantic gap, by enabling direct links between low-

level features and higher-level concepts e.g. describing body parts, anatomies and 

pathological findings. The proposed model has been developed in web ontology 

language based on description logics (OWL-DL) and can be applied to a variety of 

data mining tasks in medical informatics. It utility is demonstrated for automatic 

annotation of medical data.  
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Introduction 

Medical knowledge representation has an exceptional place in the research landscape of 
medical informatics [1]. The need to unambiguously describe medical knowledge within 
clinical environments, inherently characterized by terminological ambiguities, diverse 
guidelines and data, has given rise to the use of formal ontologies [2]. Semantic models 
based on such ontologies have been proposed for various medical applications, including 
computer-aided reporting [3], medical decision making and data mining [4].  

The increasing amounts of medical data produced annually comprise an invaluable 
source of knowledge to be discovered, represented and exploited to improve healthcare 
practices. Data mining, either supervised or unsupervised, provides the methodological 
tools to extract this knowledge [5]. Supervised methods usually address data 
classification based on prior knowledge gained by training on previously annotated data, 
whereas the unsupervised methods group data into clusters based solely on the similarity 
of the data instances without any training. The latter could be considered as an advantage 
over the supervised methods. However, the unsupervised methods, generally, require that 
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the number of target clusters is pre-specified by the user, and the resulting clusters are not 
associated with class labels.  

The data mining approaches described are challenged by the multimodality of the 
medical data. EHRs include data acquired from multiple modalities such as 
measurements, images, and free text reports. Methods that have been proposed to cope 
with this issue include low-level feature fusion [6][7][8] and higher-level ontology-based 
approaches [9]. Features can be measurements, or numerical descriptors extracted from 
measurements, images, texts or other medical data. Multiple features form 
multidimensional vector spaces, which are referred to as feature spaces. A drawback of 
the current methods is that the knowledge residing at low-level feature spaces is not 
directly related to the knowledge represented by higher-level concepts e.g. describing 
body parts, anatomies and pathological findings. This issue, which is an instance of what 
is also known as “semantic gap”, can only be partially or indirectly dealt with these 
methods.  

In this paper we present a novel semantic model for representation of knowledge 
extracted from multimodal medical data. It defines generalized qualitative spatial 
semantics to represent relations between data clusters within multidimensional feature 
spaces, which in turn can be directly related to higher-level concepts via formal semantics. 
The proposed model can be considered as a generalization of the model proposed in [10], 
which was addressing spatial relations between objects only within 2D/3D image spaces, 
and has enhanced semantic expressivity as compared with our preliminary model 
presented in [11]. In addition, we present a novel application of the proposed model for 
automatic annotation of medical data. It is used to provide prior, domain knowledge so 
that class labels are assigned to the result of a clustering.   

1. Methods 

1.1. Semantic model 

Let us consider a set of medical data acquired from M different modalities, with each 

modality contributing a set of Ni, i=1...M, features within a multimodal data mining 

environment. For example, such an environment may be defined by the modalities of an 

intensive care unit (ICU), including a device for the monitoring of the patients’ 

physiological parameters, an x-ray imaging device, and clinicians’ free text reports. The 

physiological measurements, the intensity and textural features extracted from the images, 

and the textual features extracted from the reports could be considered as feature sets of 

the respective modalities. In this example these feature sets define four feature spaces, 

namely the physiological measurements space, the image intensity space, the image 

texture space, and the textual feature space. The values of each feature set for a particular 

patient at a particular time instance form a feature vector, represented as a point at the 

respective feature space; therefore, the patient’s status at a time instance is described by 

four points, each of which is defined at a different space. A cluster of points in a feature 

space may correspond to different patients or to different time instances of the same 

patient. However, a reduced representation of the cluster [5], such as its centroid, may be 

considered as a simplification in the knowledge representation process.  



The proposed semantic model enables the representation of knowledge collected by 
manual annotation of medical data, and of knowledge extracted by data mining, as it can 
be mapped within feature spaces through the spatial arrangement of objects defined in 
these spaces, such as points and clusters. These relations are referred to as generalized 
spatial relations so as to distinguish them from the 2D/3D spatial relations, and they are 
modeled as concepts. To ensure independency from space dimensionality, the spatial 
relations can only be defined between 1D projections of a reference and a target object, 
across a certain axis of a multi-dimensional feature space. Currently two types of spatial 
relations have been included in our semantic model, namely directional and topological. 
Each spatial relation can also be linked to its inverse. Directional relations are categorized 
into positive and negative ones. A positive directional relation represents a direction 
towards a related object in the feature space and vice versa. Topological relations are 
divided into eight main categories that are based on region connection calculus 8 (RCC 8) 
[12]. The concepts defined in our semantic model are illustrated in Fig. 1(a), and 
described in the following using DL syntax [13]. 

The concept Object refers to a set of objects in a feature space, that are associated 
through spatial relations between each other. In order to refer to the objects that are used 
as a reference in the spatial relations, the concept ReferenceObject has been defined. 
TargetObject refers to objects used as targets in Spatial Relations. The concept 
NumericValue, enables the representation of numbers as instances of this concept. This is 
necessary in order to represent distinct numeric values regardless of their actual value and 
to overcome the inability of OWL-DL to express numeric datatype properties that can be 
used for reasoning. The concept VectorSpace represents a multi-dimensional space. A 
vector space may be defined by many axes that can also belong to other vector spaces as 
well: VectorSpace ⊑ (∃ definedBy.Axis) ⊓ (∀ definedBy.Axis). The Axis concept 
represents an axis that may define one or more vector spaces at the same time: Axis ⊑ (∃ 
defines.VectorSpace) ⊓ (∀ defines.VectorSpace). SpatialRelation refers to the set of 
spatial relations defined according to a reference object and a target object across an 
Axis: SpatialRelation ⊑ (∃ reference.Object) ⊓ (∃ target.Object) ⊓ (∃ hasAxis.Axis) ⊓ 
(∃ hasSpace.VectorSpace) ⊓ (∀reference.Object) ⊓ (∀target.Object) ⊓ (∀ hasAxis.Axis) 
⊓ (∀hasSpace.VectorSpace) ⊓ (=1 reference) ⊓ (=1 target) ⊓ (=1 hasAxis) ⊓ (=1 
hasSpace). The DirectionalRelation concept refers to the set of relations implying 
direction across an axis. A NumericValue indicating the number of intermediate objects 
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Figure 1. (a) Proposed semantic model. (b) 2D visualization of two example feature spaces from 

different modalities (Modality 1 and Modality 2). Clusters A and C are formed from samples of Object 

1, and clusters B and D from samples of Object 2. X-marks represent cluster centroids. (c) 

Automatically generated ontology from the feature spaces of Fig. 1(b) as described in Section 2.1.  



(or their absence if this value represents zero e.g. Value-0), between the projections of 
two objects on this axis is required. This way one can uniquely describe the relative 
position of the target objects in a vector space using a reference object and multiple 
directional relations: DirectionalRelation ⊑ SpatialRelation ⊓ (∃ 
numberOfIntermediateObjects. NumericValue) ⊓ (= 1 numberOfIntermediate 
Objects).DirectionalRelation subsumes the disjoint concepts: PositiveDirectionalRelation, 
NegativeDirectionalRelation. Spatial Relation also subsumes the concept 
TopologicalRelation which represents basic relations based on RCC 8.  

The described model of generalized spatial semantics can be subsequently used to 
acquire knowledge regarding an application domain. In the following we provide the 
description of cluster A with respect to reference object RAB (Fig. 1b) in this ontology: 
ClusterA ≡ ∃target.((∃reference.R-AB) ⊓ (∋hasAxis.{AxisY}) ⊓ (∋hasSpace. 
{Modality1Space}) ⊓ Equal) ⊓∃target ((∋numberOfIntermediateObjects.{Value-0}) ⊓ 
(∃reference.R-AB) ⊓ (∋hasAxis.{AxisX}) ⊓ (∋hasSpace.{Modality1Space}) ⊓ 
NegativeDirectionalRelationship). 

1.2. Knowledge acquisition 

Given a feature space and a set of annotated objects defined in that space, a new ontology 
is automatically generated to describe domain knowledge. This is realized by considering 
the spatial arrangement of the objects in the feature space, using the concepts defined in 
the previously described semantic model. The generated ontology will have two parts; a 
fixed part holding fundamental concepts regarding the application domain and the objects, 
and a dynamically generated part holding the generalized spatial relations between the 
objects.  

The fixed part of the concept hierarchy in the automatically generated ontology 
consists of the class CoreElements, which is superset of all classes in the automatically 
generated ontology, and four main subclasses of CoreElements (Fig. 1c): Domain, which 
represents the user-specified application domain; DomainObjects that contains 
subclasses of objects that are represented by clusters in each feature space e.g. 
pathology; Modality, which represents data obtained from a modality; and SpatialObject, 
which subsumes the automatically generated concepts that represent objects of a feature 
space e.g. a cluster.   

In the dynamically generated part, user-specified domains are asserted in the 
ontology as subclasses of the Domain class. The types of annotated objects are asserted as 
classes inheriting both the SpatialObject class and a subclass of the domain that 
represents a user-specified domain. The instances of the annotated objects are asserted as 
individuals of the class that represents the annotation type. The 1D projection of every 
object on each axis of the multidimensional feature space is spatially related to the 1D 
projection of a reference object to that axis. This is realized by means of individuals of 
the PositiveDirectionalRelation, NegativeDirectionalRelation and Equal. The latter is 
used to assert that the projections of the two objects are located at the same position on an 
axis. The reference object can be an arbitrarily selected object. This process is repeated 
for each modality. The acquired knowledge in the automatically generated ontology can 
be utilized in a variety of data mining tasks, such as data classification and information 
retrieval. An example of the automatically generated ontology is illustrated in Fig. 1(c). 

2. Results and Discussion 

In order to demonstrate the utility of the proposed model we applied it for classification 
of anonymized data obtained from patients hospitalized in ICU. The data include body 



temperature, blood gasses, and chest x-rays, from which grey-level intensity histogram 
features and Gabor textural image features have been extracted according to the 
methodology described in [14], generating feature spaces as the ones visualized in 
Fig.1(b). The data corresponding to twenty four patients with pneumonia and the image 
regions corresponding to pneumonia manifestations, known as pulmonary consolidations, 
have been carefully annotated by clinicians. The domain knowledge was acquired as 
described in section 1.2 by 10% of the data. This knowledge was used to automatically 
annotate two unlabeled clusters per feature space, as originating from a sample with 
pneumonia or not. The clustering was performed by non-negative matrix factorization 
(NMF) [14]. The centroid of the two centroids of the discovered clusters was used as a 
reference object. The individuals representing the unlabeled clusters were asserted as 
instances of the class SpatialObject. All classes of the individuals representing the 
clusters discovered from the rest 90% of the data were successfully inferred by the 
FACT++ reasoning engine, i.e. all discovered clusters were correctly labeled, regardless 
of which (disjoint) 10% of the data used for knowledge acquisition. 

Future work includes large scale application of the proposed model and its 
incorporation within our Ratsnake annotation tool [15] . 
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