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 
Abstract—Robotic endoscopic systems offer a minimally 

invasive approach to the examination of internal body structures, 
and their application is rapidly extending to cover the increasing 
needs for accurate therapeutic interventions. In this context, it is 
essential for such systems to be able to perform measurements, 
such as measuring the distance travelled by a wireless capsule 
endoscope, so as to determine the location of a lesion in the 
gastrointestinal (GI) tract, or to measure the size of lesions for 
diagnostic purposes. In this paper, we investigate the feasibility of 
performing contactless measurements using a computer vision 
approach based on neural networks. The proposed system 
integrates a deep convolutional image registration approach and 
a multilayer feed-forward neural network in a novel architecture. 
The main advantage of this system, with respect to the state-of-
the-art ones, is that it is more generic in the sense that it is: i) 
unconstrained by specific models, ii) more robust to non-rigid 
deformations, and iii) adaptable to most of the endoscopic 
systems and environments, while enabling measurements of 
enhanced accuracy. The performance of this system is evaluated 
in ex-vivo conditions using a phantom experimental model and a 
robotically-assisted test bench. The results obtained promise a 
wider applicability and impact in endoscopy in the era of big 
data. 
 

Index Terms—Endoscopy, neural networks, deep learning, deep 
matching, measurements. 

I. INTRODUCTION 

INCE 2000, with the advent of wireless capsule endoscopy 
(WCE) [1], the assessment of the gastrointestinal (GI) tract 

has undergone a major transformation with the application of 
robotic technology and disruptive solutions. Nowadays, WCE 
is considered an attractive alternative to traditional “cabled” 
GI endoscopy, due to its capability to minimize patient 
discomfort, eliminate risk of perforation, and sedation-related 
complications; therefore, it could be a useful solution in 
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increasing the take-up of population-based GI screening 
programs. Currently, WCE is primarily used in the minimally-
invasive examination of the small bowel, with lesser 
application in the oesophagus, stomach, and colon [2]. 

To date, several companies, research institutes and 
universities have explored the field of WCE by developing 
new principles and solutions for actuation, localization, 
sensing, and data telemetry [3]. In this context, a variety of 
robotic WCE systems has been proposed [4]. These include a 
capsule device which is equipped with three miniature legs, 
each carrying a wheel [5]; a legged walking tele-operated 
robotic capsule [6]; magnetically-driven robotic capsules [7], 
[8] and; robotic capsules equipped with reservoirs and 
mechanical parts for drug delivery [9][10]. However, despite 
major forward strides, there are still several technological 
limitations, mainly with respect to: i) accurate localization 
[11]; ii) accurate navigation of the capsule inside the bowel 
lumen; iii) ability to provide treatment [3]; iv) identification 
and characterization of bowel pathology [12]; and v) ability to 
accurately measure lesion size due to the two-dimensional 
nature of the WCE images. In light of the above, size 
measurement and localization capabilities are considered 
important prerequisites to overcome the rest of the 
aforementioned limitations. The vast majority of decision-
making in GI endoscopy integrates lesion size and localization 
information. Internal localization of the endoscope, derived by 
measuring its displacement from landmark anatomical 
structures (e.g., distance from the rectum, incisor teeth or 
pylorus), is essential for lesion localization, accurate 
navigation, and treatment delivery. Size measurement is also 
essential for management, e.g., larger polyps have a higher 
likelihood of malignancy. 

In this paper, we investigate a novel computer vision 
approach to enable contactless in-vivo travel distance and size 
measurements estimation in endoscopy. Going beyond the 
state-of-the-art [12][13][14][15][16], we propose a system that 
is entirely based on an artificially intelligent structure enabling 
adaptability to different conditions, such as the camera 
parameters and the environment under inspection. This 
provides a cost-efficient means of enhancing current 
endoscopic systems with localization and measurement 
capabilities, since it does not rely on any additional hardware. 
Also, it contributes to the longer vision of developing robust 
endoscopic systems with perception of the environment [17]. 

The rest of this paper is organized in four main parts: 
Section II provides an overview of the relevant state-of-the-art 
visual measurement systems. Section III presents the 
architecture of the proposed intelligent visual measurement 
system and its application framework. The performed 
experiments and the obtained results are presented in Section 
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IV. Discussion and conclusions, derived from this study, are 
summarized in the last section, Section V.  

II. VISUAL MEASUREMENT SYSTEMS IN GI ENDOSCOPY 

A. Previous Work 

In the current literature, the most popular method for 
camera calibration is the one presented by Zhang [18]. The 
setting requires a planar pattern (i.e. chessboard) and the 
camera records video from at least two different orientations. 
Among different orientations, either the camera or the plane is 
moving. The method does not require knowledge of camera 
motion. The radial lens distortion is also modelled in. Other 
works, such as Hu et al. [19] and Kannala-Brandt [20], have 
tried to address lens distortion but they require knowledge of 
focal length and optical field of view. 

In the domain of WCE, Iakovidis et al. [21] has shown that 
a Visual Odometry (VO) approach, applied to the GI tract, is 
feasible as the error in scaling parameters can remain low 
enough to be considered practical. In later works, Spyrou et al. 
[22][23] investigated various methods to extract key-points 
and features on WCE video frames and showed that the scale-
invariant feature transform (SIFT) approach provides a more 
accurate localization performance. The reported errors were of 
the order of 10-3 on average; however, the measurements 
performed were only relative, not in physical units, and CE 
motion was simulated by image rotation and scaling. 

Works such as those of Bao et al. [24] and Mi et al. [25] 
used simulated experiments to estimate and model the 
locomotion of a Capsule Endoscope (CE) using a virtual 
camera and tube. Bao et al. [24] showed that they can estimate 
the speed of the endoscopic capsule with an accuracy of 93%, 
while the CE localization accuracy was less than 2.71cm on 
average. However, the main concern with both studies is that 
these models are exclusively based on simulations. 

We recently proposed a novel VO approach to estimate the 
displacement of a CE in physical length units [12]. This 
methodology relied on the camera calibration method of 
Kannala-Brandt [20], helping to address the lack of knowledge 
of the WCE intrinsic parameters. Based on real CE data, we 
achieved a maximum value of Mean Absolute Error (MAE) of 
the actual distance covered by the CE equal to 7.2±1.4cm. 

Artificial Neural Networks (ANNs) have been extensively 
used to address camera calibration. Ahmed et al. [26] used a 
3-layer (1-hidden layer) Feed-Forward Neural Networks 
(MFNNs) with sigmoidal activation functions. This network 
was designed to map 3D world coordinates of a 2D image 
plane. The weights of its hidden layer corresponded to the 
extrinsic camera parameters, while the output layer to the 
intrinsic ones. The root mean squared calibration error of that 
approach was 0.092. In [27] a 3-layer MFNN was utilized to 
solve a similar coordination mapping problem by performing 
3D reconstruction instead of camera calibration. In that study 
it was observed that the error was following a linear increase 
as distance between the object and the camera was increasing 
beyond the range of the training distances. Besdok [28] 
proposed a Radial Basis Function (RBF) network to train a 
genetic algorithm approach for camera calibration.  

In the context of depth estimation with machine learning 
techniques, Nadeem and Kaufman [29] proposed a machine 

learning algorithm to create a depth map image from an image 
captured during traditional or capsule colonoscopy (direct 
inspection of the endoscopic inner surfaces). The depth map 
was used to detect and depict the boundaries of a polyp in the 
given image. However, their framework focuses on the 
relative depth values. 

Because ANNs provide good performance in camera 
calibration, their use has been extended to the domain of VO 
in WCE. Dimas et al. [13] used a relatively large network with 
24 inputs, 1000 hidden neurons and 3 output neurons (denoted 
as a 24-1000-3 architecture) to estimate scaling between 2 
points in consecutive CE video frames using pixel intensity as 
an additional feature to corresponding point coordinates. In 
[16], this work was further extended by investigating how 
different color elements and matching algorithms affect the 
performance of the network. The Kanade-Lucas-Tomasi 
(KLT) – RANdom SAmple Consensus (RANSAC) scheme for 
the point matching, using a 30-5-3 network architecture with 
CIE-Lab color components resulted in best accuracy. This 
method outperformed our previous geometric localization 
approach [12], with an average localization error of 
2.70±1.62cm. 

Applications of ANNs have also been proposed in the 
context of depth map estimation from regular images. Garg et 
al. [30] presented a Convolutional Neural Network (CNN), 
which is a deep ANN architecture, for monocular depth 
estimation. In their work they also proposed an unsupervised 
way for the training of the network by using images captured 
with a stereo camera rig. The minimum relative error reported 
in their paper was 0.169. In endoscopy, CNNs have been 
employed for depth estimation by Mahmood and Durr [31]. 
They combined a CNN with Conditional Random Fields 
(CRF) for the estimation of depth maps and topographical 
reconstruction of monocular endoscopic images. This joint 
architecture does not require any assumption on the geometric 
model of the camera. Their model was trained on a set of 
synthetically-generated data and tested on both real and virtual 
endoscopy data. The reported relative errors for virtual and 
real endoscopy data were 0.183 and 0.242, respectively. More 
recently, Mahmood and Durr [32] proposed another deep 
learning-based method that does not require any hand-crafted 
features. For the training of this a model, a large amount of 
augmented data was required. To cope with this problem, they 
generated training images, using a synthetic, texture-free colon 
phantom. The relative depth estimation error for the phantom 
test data was reported to be 0.164. 

Quite a few works have been published describing methods 
to measure the dimensions of lesions in the GI tract. A recent 
work by Vakil et al. [33] performed a study which compared 3 
types of measurements: i) empirical measurements conducted 
by doctors, ii) measurements based on open-biopsy forceps, 
and iii) measurements based on image processing. The camera 
was calibrated by establishing a relation between the known 
dimensions of the forceps’ open jaws and the physical 
dimension of lesions measured in pixels. The percentage MAE 
on measurements on modelled data for open-biopsy forceps 
and image processing based technique was 41.8±23.3% and 
1.8±2.2%, respectively. Same data in in-vivo condition are 
26.5±5.7% and 2.8±3.2%. More recently, Zhou et al. [34] 
studied polyp detection and radius measurement in small 
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intestine for CE videos. Their methodology relied on 
establishing a relationship between the visual sharpness of the  
target object and its dimensions. The reported error ratio of 
radius calculation was 9.77%. Park et al. [35] proposed 
measuring the size of gastrointestinal lesions by a relation 
similar to the one used in [33]. The MAE reported was of 
0.26±0.21mm. Lastly, a novel device was proposed by 
Goldstein et al. [36] to measure polyps’ dimensions. They 
used a virtual tape and not a physical object as reference. The 
upper limit of the 90% of the absolute difference of the 
estimation using the virtual tape and the reference was of 
0.55±0.31mm. Another method for polyps’ measurement, 
presented by Visentini-Scarzanella et al. [37], was based on 
structured light.  

The literature review performed in this section reveals that 
current visual CE localization and in-vivo size measurement 
methods are still at an early stage. Still open research issues 
limiting the real-world applicability of the current visual 
localization methods mainly include further robustness and 
accuracy enhancement and the development of more realistic 
experimental setups enabling measurement validation with 
ground truth data. With respect to the size measurements in 
physical units, all the current methods are based on external 
references, such as forceps or virtual tapes. 

B. Contributions of this Work 

Considering the identified open research issues and the 
effectiveness of the machine-learning-based measurement 
approaches reviewed in the previous sub-section, contributions 
of this paper beyond the state-of-the art include: 
 We propose an ANN-based system architecture that 

unlike state-of-the-art systems enables both distance and 
size measurements. 

 We investigate an unsupervised deep convolutional 
approach that is robust to non-rigid deformations for more 
accurate and less parametric CE motion estimation. 

 We propose a size measurement methodology that 
exploits motion estimation over a video frame sequence 
so as to avoid the use of external references. 

III. DEEP VISUAL MEASUREMENT SYSTEM  

The proposed visual measurement system is based on deep 
image analysis and ANNs (Fig. 1). It consists of two modules: 
i) the Deep Image Registration (DIR) module, and ii) the 

Intelligent Visual Measurement (IVM) module. The first one 
determines matching points between consecutive video 
frames, and the second one establishes a mapping between the 
2D motion of the matched points and the 3D motion of the 
endoscope within the intestine, to perform travel distance and 
size measurements. 

A. Deep Image Registration Module 

An important step for accurate visual measurements is the 
detection of points of interest in pairs of consecutive video 
frames and their registration by finding correspondences 
(matches) between the interest points.  

The DIR module is based on Deep Matching (DM) [38]. It 
is inspired by the Deep Convolutional Neural Networks 
(DCNNs) but it does not require any training. It is a fully 
unsupervised method aiming to discover correspondences 
between images. The use of the DM in DIR is motivated by: a) 
its improved matching performance over state-of-the-art 
matching algorithms on benchmark datasets [38]; b) the fact 
that it is non-parametric and that it does not depend on any 
model; c) it can handle non-rigid deformations and efficiently 
determine dense correspondences in the presence of 
significant changes between images. The latter is important for 
endoscopy applications since there are a lot of tissue 
deformations and floating objects, e.g., debris, contributing to 
false motion estimations among consecutive images. 

The methodology of DM relies on a hierarchical, 
multilayer, correlation architecture [38]. Given two images I 
and I   of size W×H, image I is split into non-overlapping 
atomic patches (samples) pNI ,  of size N×N (N=2l, l=2,3,…) 
centred at pGN, where GN represents a grid of points, 
between pixels, corresponding to the centres of the patches, 
e.g., G4={2,6,10,…W-2}×{2,6,10,…H-2} (Fig. 2) with the 
first centre to be at the grid point with coordinates (2,2)T, 
which is located in between of four pixels I(2,2), I(2,3), I(3,2) 
and I(3,3). The correlation between each patch of I at every 
location of I   is computed to obtain a corresponding 
correlation map by convolution. This convolution can be 
expressed as IIC F

pNpN  ,, , where F denotes a horizontal and 
vertical flip. The resulting correlation maps pNC ,  are 
subsequently used to build upper-level, correlation maps, and 
iteratively develop a multi-level correlation pyramid in a 
bottom-up way. The upper-level correlation maps are smaller 
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Fig. 1. Deep visual measurement system architecture. Pairs of consecutive video frames Ii and Ii-1 , i=1,2,… are used as input. In the DIR module Ii is densely 
sampled and the correlation of each sample (patch) with I   is estimated via convolution to form respective correlation maps. Several aggregation layers are used 
for the construction of a multi-level pyramid of correlation maps of different scales. By backtracking the local maxima of the correlation maps, at each level, a 
set of matching points between the two input video frames are estimated. In IVM coordinate and color features are extracted from the matched points, which are 
subsequently used  to estimate the 3D CE motion and the size of objects indicated by the user, e.g., by drawing a line segment P1P2. 
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but they are obtained from larger image patches. These 
patches are formed by concatenation of quadruplets of patches 
centred at each p. Thus, for N=2l, l>2, patches of size N/2×N/2 
are being concatenated to form patches IN,p of size N×N. The 
iterative concatenation process of the patches and the 
correlation maps ipNC ,, , i=0..3, corresponding to these patches 
can be described by the following equations: 
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where 4/, iiN Nos 
 describes the positional shift of a children 

patch i[0, 3] relatively to its parent patch, with  ]1,1[0o , 
 ]1,1[1o ,  ]1,1[2o ,  ]1,1[3o . The upper-level 

correlation maps of the patches IN,p are computed from their 
children’s correlation maps ipNC ,, , i=0..3, as follows: 
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where R  denotes a power transform known as rectification 
[39], and PT

io   denotes the combination of a translation 
operator ioT  with a max-pooling operator P. More specifically, 
each correlation map ipNC ,, , i=0..3, is translated by one pixel 
towards the direction indicated by oi, and undergoes max-
pooling using a 3×3 filter with stride 2, which dyadically 
downscales it. Equation (2) estimates the average of these 
maps and rectifies it to obtain pNC , . This process is repeated 
while N < max(W,H). 

A score )(, pCS pN  , calculated by (2) in the multi-level 
correlation pyramid, represents a deformation-tolerant 

similarity of two patches pNI ,  and pNI  , . Considering this as 
an entry point in the pyramid, atomic matches between I and 
I   can be obtained by backtracking local maxima in the 
correlation maps and undoing the steps used to aggregate them 
during the pyramid construction. The atomic matches, 
obtained from different entry points in the pyramid, are 
subsequently merged and the matches with the lower 

similarity scores are discarded.  
Similarly with our previous methods [12], [13], [15], [16], 

[21–23], on the sets of matched points found using DM, 
RANSAC can be applied in order to keep only the matches 
which follow a certain geometrical pattern, and in that sense 
remove outliers. However, the architecture illustrated in Fig. 
1, does not include RANSAC because our experimental results 
(Section IV) show that RANSAC can be omitted. In the 
context of this work, images I and I   represent a pair of 
consecutive endoscopic video frames Ii and Ii-1, i=1,2,… . 

B. Intelligent Visual Measurement Module (IVM) 

The IVM module is based on a Fully Connected feed-
forward ANN (FC-ANN) enabling the measurement of the 3D 
motion of the endoscope, which is used for the estimation of 
the travel distance of the endoscope within the GI tract. In 
addition, this information is exploited to perform size 
measurements of clinical findings with a novel methodology. 

1) 3D Motion Measurement 
Motion measurement is performed with a computationally 

simple, non-linear, and adaptive to any camera model, sub-
system. It is based on a 3-layer FC-ANN architecture (with 
one hidden layer), which is well-known for its universal 
approximation capacity [40]. 

The FC-ANN receives as input a set of features extracted 
from the matching points detected by the DIR module in pairs 
of consecutive endoscopic frames. Given a minimum set of m 
matched points per frame, 5 features are extracted per point 
forming a feature vector q: i) its coordinates (u, v), and ii) its 
color values expressed in CIE-Lab color space (L, a, b). The 
use of color information has been proved useful in modelling 
the appearance of the tissue as a function of its distance from 
the endoscope [16]. The dimensionality of the input layer of 
the FC-ANN is determined by the concatenation of the 
extracted features from the two frames into a single feature 
vector N = 5×2×m. The minimum number of matching points 
m is determined as the least number of matches per frame pair 
found in the training set. If the number of matching points in a 
frame pair is larger than m, the extra matches are divided into 
groups of m matches, forming respective groups of N-
dimensional input vectors qj, j=1,2… up to the largest integral 
multiple of m, e.g., if the number of matches found is 10, and 
m=3, a total of three N-dimensional input vectors will be 
formed, and the remaining matches are discarded. The FC-
ANN inputs should be provided in a consistent way preserving 
the relative spatial information between the consecutive 
frames, e.g., in our study we have considered that the first half 
of the inputs are obtained from the points of frame Ii and the 
second half from the respective points of the next frame Ii-1.  

The hidden along with the output layer of the FC-ANN 
perform a mapping of the spatial and color components of the 
corresponding points, provided in its input, to the 3D relative 
displacement of the CE. The aggregation of the inputs 
performed by the FC-ANN focus on this mapping, 
disregarding the within-frame spatial relations of the points, 
which for our application are considered of lower relevance. 
The number of neurons in the hidden layer of the FC-ANN is 
an experimentally determined parameter of the system. 

The dimensionality of the output layer of the FC-ANN is 
equal to that of the 3D real-world coordinate space of the 
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Fig. 2. Example 8×8-pixel image (W=H=8), with the small squares to 
represent its pixels. The green points represent the G4={2,6}×{2,6} grid 
points for this image, as defined in our manuscript. The respective patches 
are of 4×4 pixels (N=4). 
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endoscope. It is composed of 3 neurons, each of which outputs 
a measurement for the motion of the endoscope along a 
different axis of the Cartesian coordinate system, i.e.,     
Δxi=xi-xi-1,  Δyi=yi-yi-1 and Δzi=zi-zi-1. These measurements are 
based on the 2D motion and appearance of the matching 
interest points found in the examined pair of consecutive input 
video frames Ii and Ii-1. The total distance travelled by the 
endoscope from a video frame Ii to a video frame Ii+n can be 
estimated by summing up the Euclidean distances between the 
intermediate consecutive pairs of frames: 

      



 

ni

ik
kkknii zyxIID

1

222),(   (3) 

Our approach, handles both forward and backward motion 
in the same way, taking into consideration only the absolute 
displacement and not the direction of the motion. The 
direction can be extracted from the differences in the scale of 
matched points. Let P(x, y) a point in image I and 

)','(' yxP the corresponding (matched point) in image I  . In 
order to determine if the CE is moving forward or backwards, 
we just need to calculate the L2 (Euclidean) norm of each 
point. If the L2(P)/L2( 'P ) < 1, then the CE is moving forward, 
if the L2(P)/L2( 'P ) > 1, the CE is moving backwards. 

 

2) Size Measurement 
In order to determine the actual size of an object within an 

endoscopic image we need to establish a relation between its 
size measured in pixels and its size measured in physical units. 
By using the pinhole camera model, a world point (x, y, z) is 
projected to the image plane as follows [41]: 
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where f is the effective focal length of the camera. From the 
projection Tvu )~,~( , we can obtain the corresponding image 
coordinates Tvu ),( in pixel units with the respective 
transformation: 

 



























0

0

~

~

v

u

vD

usD

v

u

v

uu   (5) 

where su is a scale factor, and Du and Dv are coefficients 
needed to change the metric units to pixels. The vector 

Tvu ),( 00 represents the principal centre of the image. By 
replacing the projection Tvu )~,~( with respect to the world 
points (x, y, z) in (4) we have: 
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By solving the linear system with respect to x and y the 
following relations are obtained: 
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In order to solve (7) for x and y we need to know the distance z 
between the camera and the world points, which are estimated 
using the ANN described in the first part of Section III.B. The 
quantities fx = fDusu, fy = fDv and (u0, v0)

T are estimated by 
following the camera calibration procedure described in [18]. 
Once we calculate the x and y values of two world points, 
denoted as P1=(x1, y1, z1) and P2=(x2, y2, z2), the length of the 
linear segment P1P2 can be measured by the Euclidean 
distance: 

 2
12

2
12

2
1221 )()()(),( zzyyxxPPd   (8) 

This distance is calculated for the size measurement of objects 
visible through the endoscope as follows: i) choose a video 
frame Ii where the object to be measured is clearly visible and 
select two points, p1 = (u1, v1) and p2 = (u2, v2), defining a 
linear segment on the object to be measured, e.g., its diameter; 
ii) for each point pl, l = 1, 2 perform a 3D motion 
measurement as described in the first part of Section III.B, 
from frame Ii to the first frame Ii+n where the point disappears, 
and set zl=Δzi, l = 1, 2; and iii) calculate xl, yl by substituting zl 

in (6), and d(P1, P2) by substituting the calculated xl, yl, zl in 
(7). This methodology considers that lens distortion is 
corrected before the estimation of the (xj, yj, zj); thus, it is 
directly applicable on commercial endoscopes. 

IV. EXPERIMENTS AND RESULTS 

Experiments were performed to investigate the feasibility of 
performing travel distance and size measurements with the 
proposed methodology. Differently to previous experimental 
validation approaches, which were based on computer 
simulations, the experimental design of this study aims to 
provide a less ideal environment, with the necessary ground-
truth information, to perform both motion and size 
measurements in real-world units. 

A. Robotically-Assisted Experiment 

The proposed experimental workbench aims to reproduce a 
real capsule-based endoscopic procedure but in a controlled 
and repeatable operating environment. A WCE, stably placed 
through a plastic rod on the end-effector of an accurate 
industrial robotic arm, was guided in a small bowel phantom. 
Several colored targets were located inside the bowel 
phantom, properly fixed to a custom-made support, to 
reproduce anatomical landmarks. The setup includes five main 
components (Fig. 3), discussed in detail below: 

1) An accurate six degrees-of-freedom (DoFs) industrial 
robotic arm (RV-3SB robot, Mitsubishi, Tokyo, Japan) 
moves the WCE forward and backward inside the bowel 
phantom (Fig.3a). The robotic arm was programmed to 
move with controlled velocity and acceleration. 

2) A rectilinear straight plastic rod attached to the end-
effector of the industrial robotic arm. The rod, which 
houses the WCE in its final part, has a length (i.e. 330 
mm) such as to cover the entire bowel phantom during 
locomotion (Fig. 3a). 

3) A Pillcam® SB3 CE system (Medtronic, Minnesota, 
USA), including an image-receiving belt (Fig. 3b) and an 
endoscopic capsule (Figs. 3a-b) with the following 



 6 
 

features: i) adaptive frame rate between 2 and 6 fps; ii) 
size of 11.4×26.2mm; iii) CMOS image sensor with a 
resolution of 320×320 pixels; iv) field of view of 156°; 
and v) depth of field between 0-30mm [2]. 

4) A 30cm-long double layer LifeLike bowel phantom 
(LifeLike, Biotissue Inc., Ontario, Canada) with an 
elliptical shape of approximately 22×30 mm (Fig. 3b). 
Inside the bowel phantom, twenty-four artificial colored 
pins were randomly arranged along four parallel lines 
with four different colors (Fig. 3c): 4 red, 13 white, 3 blue 
and 4 yellow. Each target, fixed with a plastic butterfly 
clutch in the external part of the phantom, presents 
circular shape with a head diameter of 0.95cm. 

5) A custom-made support keeps the ends of bowel 
phantom, subsequently stretched in order to linearize it as 
much is possible while the CE is moved along its axis 
(Fig. 3b). 

After properly placing the LifeLike bowel phantom on the 
custom-made support and establishing the starting point of the 
tests, all the distances between the starting point and the centre 
of each target were accurately measured with a digital calliper. 
The complete test involves forward and backward movements 
according to a number of pre-established incremental steps 
necessary to cover the entire length of the bowel phantom. 
Each single movement was performed at a constant velocity, 
while a constant time was elapsed between one-step and the 
next to allow the acquisition of a sufficient number of frames 
(approximately 10 frames) per position. The same procedure 
was repeated 6 times at different velocities: 0.5, 1 and 2mm/s. 
The correlation between the capsule position and collected 
images was calculated considering the timestamp of each 
frame and the motion velocity of the endoscopic capsule, 
moved through the external robotic arm. 

B. 3D Motion Measurements  

Several experiments were conducted for the evaluation of 
the proposed system with regards to its performance in 
measuring travel distances. The FC-ANN architecture of IVM 
was 30-5-3. The number of input neurons was N=30 since the 
least number of matches per frame pair was m=3 (Section 
III.B). The number of hidden neurons was selected as the least 
one minimizing the MAE for the particular input 
dimensionality [16]. 

A total of 12 video sequences were obtained using the 
experimental setup described in Section IV.A. A 5-fold Cross 
Validation (CV) experiment was performed using 8 video 
sequences out of the 12. The early stopping approach was used 
to avoid overfitting; thus, for each fold we split the dataset 
with proportions of 80% for training and 20% for validation 
according to the Pareto principle. There were not any overlaps 
of the frames used among the different folds and the subsets 
used for training and validation. The validation set included 4 
videos where the CE was moving forward with velocities of 
0.5 mm/s (two videos) and 1 mm/s (two videos), and 4 videos 
where the CE moving backwards with the same motion 
patterns. The remaining 4 out of the 12 videos were used for 
testing the performance of the proposed system on new data 
(unknown to the system). The velocity of the CE in these 
videos was 2 mm/s.  The two of them were obtained using 

 
Fig. 3. (a) Detail of the robotic arm used during the experimental tests with the 
end-effector mounted on the plastic rod and the WCE at the end of the rod. (b) 
Overview of the robotically-assisted experimental setup including the robotic 
arm, plastic rod, image-receiving belt, endoscopic capsule, LifeLike bowel 
phantom held by a custom-made support. (c) Phantom bowel opened after the 
experiments with the colored pins on the four parallel lines in evidence. 

forward motion and the other two were obtained using 
backward motion. The performance of the proposed system 
was evaluated in terms of MAE, which is estimated from the 
output errors of FC-ANN, obtained over the total travel 
distance measured in the test sets against the ground truth. In 
order to avoid any dependence of the results from the color of 
the pins the correspondences between the images that were 
falling within the colored pins or on their edges, were 
excluded from all the experiments. 

We compared various DIR approaches including DM-
RANSAC, DM without RANSAC, and SIFT-KLT-RANSAC 
[16]. The results on the test datasets of the 5-fold CV on 
average as estimated from the different folds, are presented in 
Table I. It can be noticed that DM-RANSAC provides the 
lowest average MAE over all DIR approaches. The results of 
the best performing FC-ANN determined by that CV process 
are summarized in Table II. This table presents the absolute 
errors obtained on the 4 testing videos that were not included 
in the CV process. In two of them the CE was moving forward 
(Front 1, Front 2) and in the other two the CE was moving 
backwards (Back 1, Back 2). In the last row of this table the 
MAE estimated per DIR approach from these 4 datasets is 
reported. The lowest MAE was obtained with the DM-based 
DIR approaches. Although DM without RANSAC produced a 
higher average MAE in the 5-fold CV evaluation, it resulted in 
the lowest MAE in Table II; however, its MAE can be 
considered comparable to that of DM-RANSAC. This is an 
indication that RANSAC could be omitted given a well-
trained FC-ANN, aiming to the reduction of the overall 
computational complexity. Figure 4 illustrates the trajectories 
of the CE reconstructed by the proposed system (indicative 
results corresponding to the results of test video ‘Front 1’ of 
Table II). It can be noticed that both the compared methods 
produced very small errors (of the order of 10-3cm) on X and Y 
axes, but the smaller one is achieved by DM. 

C. Size Measurements 

The performance of the proposed system in size 
measurement was evaluated by measuring the diameter of the 
pins attached to the interior of the lifelike bowel. The focal 
length of the CE was not known a-priori and it was determined 
by Zhang’s [18] camera calibration procedure, as implemented 
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in Bouget’s camera calibration toolbox [33], [43]. In pixel 
units, the focal length was estimated to be fx=148, fy=146 and 
the principal point ppx=166 ppy=152. After this estimation, we 
performed an optimization routine for the fx and fy values to 
achieve optimum results. The optimization was performed on 
the pins of the training set. The required ground truth of the zl 
values of the camera towards points pl defining the linear 
segment to be measured (Section III.B) was known. For the 
refinement of the fx and fy, we performed 20 measurements of 
the diameter of the pins. Instead of finding directly the xl and 
yl and regarding that the zl and the diameter of the pin was 
known, we replaced xl and yl in (7) with (6). After iterating for 
different values of fx and fy they were settled at fx=155, fy=155. 
Experimentally, we observed that when the camera was 
measuring the diameter of the pins from a distance greater 
than ΔΖ = 3cm, the error over the distance ratio was constant 
with a value of r = 0.1. This could be attributed to the limited 
image resolution. As the distance of the objects from the 
camera increases, they become smaller and the uncertainty in 
the size measurement of the objects (in pixels) increases. The 
effect of this increase was observed to be constant for the 
distances for which the pins were visible in the images. To 
cope with this systematic error, we set a correction factor 
defined as c = 0.1·ΔΖ which is subtracted from the final result 
if ΔΖ > 3cm. For the testing step, the DIR/IVM with and 
without the assistance of RANSAC, was used for the size 
estimation procedure. We chose these two approaches because 
they provided the most accurate 3D motion estimations. 

In total we measured the diameter of 32 pins observed on 
the videos used for the testing of the DIR modules (their 
diameter was known and equal to 0.95cm). The distance from 
the point of observation of the camera, to the pins was 
unknown. For the estimation of z values we used and 
compared both DM and DM-RANSAC based approaches. The 
MAE for measuring the diameter of the pins using the DM 
approach to estimate the zvalues was of 0.19±0.18cm. By 
using the DM-RANSAC approach for measuring the same 
pins, we obtained a MAE of 0.23±0.18cm. Figure 5 illustrates 
the size measurement errors per pin, produced using these DIR 
approaches. The dashed lines indicate the respective MAEs of 
the pin diameter measurements. The black solid line represents 
a 30% error threshold, which is defined as a significance level 
in [44] (discussed in Section V).  It can be noticed that in most  

 TABLE I 
5-FOLD CV MEAN ABSOLUTE ERRORS (IN CM) 

Methods DM-RANSAC DM SIFT-KLT-RANSAC [16] 

MAE 2.11±1.45 4.49±1.55 3.72±2.19 

TABLE IΙ 
ABSOLUTE ERRORS PER VIDEO OF THE TEST DATASET (IN CM) 

Methods/ 
Datasets 

DM-RANSAC DM SIFT-KLT-RANSAC [16] 

Front 1 0.70 0.13 2.91 
Front 2 2.68 3.04 4.83 
Back 1 3.02 1.35 2.08 
Back 2 0.25 0.32 0.98 
MAE 1.66±1.39 1.21±1.33 2.70±1.62 
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Fig. 4. Estimated trajectory of the camera using different DIR approaches 
based on video Front 1 (a). The trajectory of the endoscope with respect to Z 
and X axes. (b) The trajectory of the endoscope with respect to Z and Y axes. 
The error of all approaches on the X and Y axis is of the order of 10-3 cm. 
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Fig. 5. Size measurement error per pin of the test dataset. 

cases both the compared DIR approaches result in an absolute 
error of less than 0.31cm (30% of the 0.95cm pin diameter). 

V. DISCUSSION AND CONCLUSIONS 

We presented a novel system for in-vivo contactless 
measurements in endoscopy. Novel contributions include a 
system architecture entirely based on deep analysis of 
endoscopic video and neural networks, and a size 
measurement methodology that exploits 3D motion estimation 
over a video frame sequence. Advantages of the proposed 
system over the state-of-the-art includes i) enhanced motion 
measurement performance, ii) size measurement capability, 
and iii) enhanced domain adaptability by being independent 
from handcrafted features (such as SIFT) and geometric 
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models. The feasibility and the accuracy of the measurements 
were assessed with a set of experiments that include a 
robotically-assisted setup enabling validation of measurements 
in real-world units. 

The experimental evaluation of the proposed system was 
performed with a CE, using a robotically-assisted 
experimental test bench. This test bench provided the 
necessary ground truth information for the validation of the 
performed measurements. However, the utility of the proposed 
system is not limited to WCE. The main reason for choosing a 
CE instead of a conventional, flexible, endoscope is that it is 
more challenging. Since CEs are wireless, the cues for 
estimating their travel distance within the GI lumen are 
limited. Current sensor-based CE localization approaches are 
useful in determining their position within the 3D abdominal 
space, which can be indirectly used for the approximation of 
the location of the CE within the GI lumen [11]. In our 
previous studies [13][15][16] we showed that the visual 
measurement of travel distances can enhance the localization 
accuracy of CE within the GI lumen. In this study we showed 
that the proposed system, which is more generic than the state-
of-the-art systems of this kind can be even more accurate, and 
it can also be used for size measurements. This makes it a 
useful tool for medical decision support (e.g., for size 
measurement of polyps, where size is a malignancy risk 
factor), which along with computer-aided abnormality 
detection and recognition methods [11] can be used for 
automated analysis of the large volumes of video frames 
produced by WCE procedures in the era of big data. 

The advantages of the proposed system discussed in the 
beginning of this section are complemented by its enhanced 
accuracy over the recent relevant works [12][13][15][16]. As 
it can be derived from the results presented in Table II the 
MAE achieved by the proposed VO approach is almost half 
(45%) of that achieved by the most recent approach [16]. It is 
also notable that this significantly higher accuracy is achieved 
without the use of RANSAC, which introduces additional 
computational complexity. Furthermore, unlike studies using 
simulated data, such as [24],[25], our study was based on real 
images captured by the CE using an artificial bowel phantom. 
In other studies [14],[21–23] the motion of the CE was 
estimated in relative scales and not in physical units (cm) as in 
our study. Depth map estimation methods, such as 
[29],[30],[31],[32], could be used in the measurements context 
investigated in this paper, since the presented experiment 
addresses motion estimation along the Z-axis. However, the 
problem of CE motion estimation is 3D, and the proposed 
system enables the CE motion estimation in all (X, Y, Z) axes. 
Also, these depth map estimation methods currently provide 
relative scale estimations. 

With respect to size measurements, in [44] of the sizes of 
different polyps were measured by two groups of medical 
experts; a group of endoscopists and a group of pathologists. 
Errors greater than 30% of the size of the objects, i.e., the 
polyps, measured (Fig. 5), were considered significant enough 
to be characterized as inaccurate. Based on this consideration 
endoscopists, provided a 20% of inaccurate polyp 
measurements, whereas the respective percentage for the 
pathologists was only 4%. Considering the 30% threshold set 
in [44] over the size of the objects measured, which in our 

study are the colored pins, the inaccurate size measurements 
using DM-RANSAC and DM were 28.1% and 21.8% of the 
pins, respectively. 

In comparison to the state-of-the-art techniques enabling size 
measurements in physical units [33],[35],[36] the size 
measurement approach implemented by the IVM module of 
the proposed system enables the estimation of the size of an 
object of interest without any external reference, such as 
forceps and virtual tapes. Furthermore, the proposed approach 
is more suitable for WCE, where forceps or other tools are not 
yet available (they are available only in concept CE models 
[3]). The error percentages with respect to the size 
measurement of the objects in these studies (Section II) were 
generally lower than the respective percentage achieved using 
DM (20±18.9%). However, their results are not directly 
comparable with the results in our study since they have been 
obtained with different datasets and experimental setups. 

We have to recognize that the validation of the proposed VO 
estimation methodology was based on an experimental set up 
that had some limitations. Namely, the bowel phantom was 
placed in a straight line at a constant velocity each time. In 
real conditions, the GI tract is characterized by folds and the 
lumen is contracting, forcing the CE to move in a non-
predictable way. Generally, the dominant motion of the 
capsule in-vivo is forward, whereas in contraction periods 
sometimes the CE is forced to move backwards. Also, the 
velocity of the CE is variable inside the GI tract. Regarding 
the size measurements, the fact that all the landmarks to be 
measured, had the same size and they were placed in the same 
visual perspective towards the CE, was simplifying the 
problem. Nevertheless, the results obtained open perspectives 
for further experimentation in more complex environments, 
aiming to the ultimate goal of in-vivo measurements. 

To this end our next step is to evaluate the proposed 
intelligent system using a more realistic intestinal phantom 
model, e.g., with turns and folds of various degrees; however, 
there are still several challenges to overcome with respect to 
establishing the ground-truth within such an environment. 
Future work includes the investigation of alternative image 
registration and measurement techniques, extending current 
depth map estimation approaches [29],[30],[31],[32], and deep 
learning methods for image registration, such as siamese 
networks [45].   

The potentials of the proposed methodology are not limited 
to GI endoscopy. Considering that it is entirely adaptive it can 
also be used for in-vivo measurements in the context of other 
endoscopic procedures, such as colposcopy [46] and 
laparoscopy [47]. 
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